Processing math: 100%
generated by bibbase.org
  2025 (2)
The structural basis for RNA slicing by human Argonaute2. Mohamed, A. A.; Wang, P. Y.; Bartel, D. P.; and Vos, S. M. Cell Reports, 44(1): 115166. January 2025.
The structural basis for RNA slicing by human Argonaute2 [link]Paper   doi   link   bibtex  
Reprogrammable RNA-targeting CRISPR systems evolved from RNA toxin-antitoxins. Zilberzwige-Tal, S.; Altae-Tran, H.; Kannan, S.; Wilkinson, M. E.; Vo, S. C.; Strebinger, D.; Edmonds, K. K.; Yao, C. J.; Mears, K. S.; Shmakov, S. A.; Makarova, K. S.; Macrae, R. K.; Koonin, E. V.; and Zhang, F. Cell. February 2025.
Reprogrammable RNA-targeting CRISPR systems evolved from RNA toxin-antitoxins [link]Paper   doi   link   bibtex  
  2024 (13)
A proteolytic AAA+ machine poised to unfold protein substrates. Ghanbarpour, A.; Sauer, R. T; and Davis, J. H Nature Communications, 15(9681). November 2024.
doi   link   bibtex  
2.6-Å resolution cryo-EM structure of a class Ia ribonucleotide reductase trapped with mechanism-based inhibitor N3CDP. Westmoreland, D. E.; Feliciano, P. R.; Kang, G.; Cui, C.; Kim, A.; Stubbe, J.; Nocera, D. G.; and Drennan, C. L. Proceedings of the National Academy of Sciences of the United States of America, 121(45). 2024.
doi   link   bibtex  
Alzheimer’s disease seeded tau forms paired helical filaments yet lacks seeding potential. Duan, P.; Dregni, A. J; Xu, H.; Changolkar, L.; Lee, V. M.; Lee, E. B; and Hong, M. Journal of Biological Chemistry, 300(9). 2024.
doi   link   bibtex  
Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA. Wilkinson, M. E.; Li, D.; Gao, A.; Macrae, R. K.; and Zhang, F. Science, 386(6717). August 2024.
doi   link   bibtex  
Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy. Biester, A.; Grahame, D. A.; and Drennan, C. L. Proceedings of the National Academy of Sciences of the United States of America, 121(41). October 2024.
doi   link   bibtex  
Structural basis for CCR6 modulation by allosteric antagonists. Wasilko, D. J.; Gerstenberger, B. S.; Farley, K. A.; Li, W.; Alley, J.; Schnute, M. E.; Unwalla, R. J.; Victorino, J.; Crouse, K. K.; Ding, R.; Sahasrabudhe, P. V.; Vincent, F.; Frisbie, R. K.; Dermenci, A.; Flick, A.; Choi, C.; Chinigo, G.; Mousseau, J. J.; Trujillo, J. I.; Nuhant, P.; Mondal, P.; Lombardo, V.; Lamb, D.; Hogan, B. J.; Minhas, G. S.; Segala, E.; Oswald, C.; Windsor, I. W.; Han, S.; Rappas, M.; Cooke, R. M.; Calabrese, M. F.; Berstein, G.; Thorarensen, A.; and Wu, H. Nature Communications, 15(1): 7574. August 2024.
Structural basis for CCR6 modulation by allosteric antagonists [link]Paper   doi   link   bibtex   abstract  
Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein. Birkholz, N.; Kamata, K.; Feussner, M.; Wilkinson, M. E.; Cuba Samaniego, C.; Migur, A.; Kimanius, D.; Ceelen, M.; Went, S. C.; Usher, B.; Blower, T. R.; Brown, C. M.; Beisel, C. L.; Weinberg, Z.; Fagerlund, R. D.; Jackson, S. A.; and Fineran, P. C. Nature, 631(8021): 670–677. July 2024.
Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein [link]Paper   doi   link   bibtex   abstract   1 download  
Data-driven regularization lowers the size barrier of cryo-EM structure determination. Kimanius, D.; Jamali, K.; Wilkinson, M. E.; Lövestam, S.; Velazhahan, V.; Nakane, T.; and Scheres, S. H. W. Nature Methods. June 2024.
Data-driven regularization lowers the size barrier of cryo-EM structure determination [link]Paper   doi   link   bibtex   abstract   2 downloads  
Milligram-Scale Assembly and NMR Fingerprint of Tau Fibrils Adopting the Alzheimer’s Disease Fold. Duan, P.; El Mammeri, N.; and Hong, M. Journal of Biological Chemistry. 2024.
Milligram-Scale Assembly and NMR Fingerprint of Tau Fibrils Adopting the Alzheimer’s Disease Fold [link]Paper   doi   link   bibtex  
Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery. Madigan, V.; Zhang, Y.; Raghavan, R.; Wilkinson, M. E.; Faure, G.; Puccio, E.; Segel, M.; Lash, B.; Macrae, R. K.; and Zhang, F. Proceedings of the National Academy of Sciences of the United States of America, 121(11). March 2024.
Human paraneoplastic antigen Ma2 (PNMA2) forms icosahedral capsids that can be engineered for mRNA delivery [link]Paper   doi   link   bibtex  
Structures of AT8 and PHF1 phosphomimetic tau: Insights into the posttranslational modification code of tau aggregation. El Mammeri, N.; Dregni, A.; Duan, P.; and Hong, M. Proceedings of the National Academy of Sciences of the United States of America, 121(10). February 2024.
Structures of AT8 and PHF1 phosphomimetic tau: Insights into the posttranslational modification code of tau aggregation [link]Paper   doi   link   bibtex   1 download  
Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing. Su, B. G.; and Vos, S. M. Molecular Cell, 84(7): 1243-1256.e5. April 2024.
Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing [link]Paper   doi   link   bibtex   3 downloads  
In situ architecture of Opa1-dependent mitochondrial cristae remodeling. Fry, M. Y; Navarro, P. P; Hakim, P.; Ananda, V. Y; Qin, X.; Landoni, J. C; Rath, S.; Inde, Z.; Lugo, C. M.; Luce, B. E; Ge, Y.; McDonald, J. L; Ali, I.; Ha, L. L; Kleinstiver, B. P; Chan, D. C; Sarosiek, K. A; and Chao, L. H The EMBO Journal, 43(3): 391–413. January 2024.
In situ architecture of Opa1-dependent mitochondrial cristae remodeling [link]Paper   doi   link   bibtex   2 downloads  
  2023 (12)
Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Wang, D.; Fiebig, O. C.; Harris, D.; Toporik, H.; Ji, Y.; Chuang, C.; Nairat, M.; Tong, A. L.; Ogren, J. I.; Hart, S. M.; Cao, J.; Sturgis, J. N.; Mazor, Y. M.; and Schlau-Cohen, G. S. PNAS, 120(28). April 2023.
Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria [link]Paper   doi   link   bibtex   abstract  
Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Wilkinson, M. E.; Frangieh, C.; Macrae, R. K.; and Zhang, F. Science, 380(6642): 301-308. April 2023.
Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription [link]Paper   doi   link   bibtex   abstract   1 download  
Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway. Vasquez, S.; Marquez, M. D.; Brignole, E. J.; Vo, A.; Kong, S.; Park, C.; Perlstein, D. L.; and Drennan, C. L. Communications Biology, 6(1): 1276. December 2023.
Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway [link]Paper   doi   link   bibtex   abstract   1 download  
Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex. Markert, J. W.; Vos, S. M.; and Farnung, L. Nature Communications, 14(1): 8128. December 2023.
Structure of the complete Saccharomyces cerevisiae Rpd3S-nucleosome complex [link]Paper   doi   link   bibtex   abstract  
Application of Monolayer Graphene to Cryo-Electron Microscopy Grids for High-resolution Structure Determination. Grassetti, A. V.; May, M. B.; and Davis, J. H. Journal of Visualized Experiments, (201). November 2023.
Application of Monolayer Graphene to Cryo-Electron Microscopy Grids for High-resolution Structure Determination [link]Paper   doi   link   bibtex   2 downloads  
A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation. Ghanbarpour, A.; Cohen, S. E.; Fei, X.; Kinman, L. F.; Bell, T. A.; Zhang, J. J.; Baker, T. A.; Davis, J. H.; and Sauer, R. T. Nature Communications, 14(1): 7281. November 2023.
A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation [link]Paper   doi   link   bibtex   abstract  
Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase. Vaccaro, F. A.; Faber, D. A.; Andree, G. A.; Born, D. A.; Kang, G.; Fonseca, D. R.; Jost, M.; and Drennan, C. L. Journal of Biological Chemistry, 299(9): 105109. September 2023.
Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase [link]Paper   doi   link   bibtex  
A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles. Dodge, G. J.; Bernstein, H. M.; and Imperiali, B. Protein Expression and Purification, 207: 106273. July 2023.
A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles [link]Paper   doi   link   bibtex  
Fanzor is a eukaryotic programmable RNA-guided endonuclease. Saito, M.; Xu, P.; Faure, G.; Maguire, S.; Kannan, S.; Altae-Tran, H.; Vo, S.; Desimone, A.; Macrae, R. K.; and Zhang, F. Nature, 620(7974): 660–668. August 2023.
Fanzor is a eukaryotic programmable RNA-guided endonuclease [link]Paper   doi   link   bibtex   abstract  
High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics. Chen, T.; Banda, H.; Yang, L.; Li, J.; Zhang, Y.; Parenti, R.; and Dincă, M. Joule, 7(5): 986–1002. May 2023.
High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics [link]Paper   doi   link   bibtex   1 download  
The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tagged substrate delivery. Ghanbarpour, A.; Fei, X.; Baker, T. A.; Davis, J. H.; and Sauer, R. T. PNAS, 120(6). January 2023.
The SspB adaptor drives structural changes in the AAA+ ClpXP protease during ssrA-tagged substrate delivery [link]Paper   doi   link   bibtex   abstract  
3D RNA-scaffolded wireframe origami. Parsons, M. F.; Allan, M. F.; Li, S.; Shepherd, T. R.; Ratanalert, S.; Zhang, K.; Pullen, K. M.; Chiu, W.; Rouskin, S.; and Bathe, M. Nature Communications, 14(1): 382. January 2023.
3D RNA-scaffolded wireframe origami [link]Paper   doi   link   bibtex   abstract   1 download  
  2022 (14)
Near‐Unity Superradiant Emission from Delocalized Frenkel Excitons in a Two‐Dimensional Supramolecular Assembly. Barotov, U.; Thanippuli Arachchi, D. H.; Klein, M. D.; Zhang, J.; Šverko, T.; and Bawendi, M. G. Advanced Optical Materials, 11(2). November 2022.
Near‐Unity Superradiant Emission from Delocalized Frenkel Excitons in a Two‐Dimensional Supramolecular Assembly [link]Paper   doi   link   bibtex  
RNA-activated protein cleavage with a CRISPR-associated endopeptidase. Strecker, J.; Demircioglu, F. E.; Li, D.; Faure, G.; Wilkinson, M. E.; Gootenberg, J. S.; Abudayyeh, O. O.; Nishimasu, H.; Macrae, R. K.; and Zhang, F. Science, 378(6622): 874–881. November 2022.
RNA-activated protein cleavage with a CRISPR-associated endopeptidase [link]Paper   doi   link   bibtex  
AAA+ protease-adaptor structures reveal altered conformations and ring specialization. Kim, S.; Fei, X.; Sauer, R. T.; and Baker, T. A. Nature Structural & Molecular Biology, 29(11): 1068–1079. November 2022.
AAA+ protease-adaptor structures reveal altered conformations and ring specialization [link]Paper   doi   link   bibtex   abstract  
Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Hirano, S.; Kappel, K.; Altae-Tran, H.; Faure, G.; Wilkinson, M. E.; Kannan, S.; Demircioglu, F. E.; Yan, R.; Shiozaki, M.; Yu, Z.; Makarova, K. S.; Koonin, E. V.; Macrae, R. K.; and Zhang, F. Nature, 610(7932): 575–581. October 2022.
Structure of the OMEGA nickase IsrB in complex with $ω$RNA and target DNA [link]Paper   doi   link   bibtex   abstract  
Structural basis for APE1 processing DNA damage in the nucleosome. Weaver, T. M.; Hoitsma, N. M.; Spencer, J. J.; Gakhar, L.; Schnicker, N. J.; and Freudenthal, B. D. Nature Communications, 13(1): 5390. September 2022.
Structural basis for APE1 processing DNA damage in the nucleosome [link]Paper   doi   link   bibtex   abstract  
Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Gao, L. A.; Wilkinson, M. E.; Strecker, J.; Makarova, K. S.; Macrae, R. K.; Koonin, E. V.; and Zhang, F. Science, 377(6607). August 2022.
Prokaryotic innate immunity through pattern recognition of conserved viral proteins [link]Paper   doi   link   bibtex  
Structure of the nutrient-sensing hub GATOR2. Valenstein, M. L.; Rogala, K. B.; Lalgudi, P. V.; Brignole, E. J.; Gu, X.; Saxton, R. A.; Chantranupong, L.; Kolibius, J.; Quast, J.; and Sabatini, D. M. Nature, 607(7919): 610–616. July 2022.
Structure of the nutrient-sensing hub GATOR2 [link]Paper   doi   link   bibtex   abstract  
https://doi.org/10.3389/fmolb.2022.903148. Levitz, T. S.; Weckener, M.; Fong, I.; Naismith, J. H.; Drennan, C. L.; Brignole, E. J.; Clare, D. K.; and Darrow, M. C. Frontiers in Molecular Biosciences, Volume 9. June 2022.
https://doi.org/10.3389/fmolb.2022.903148 [link]Paper   link   bibtex  
Planar 2D wireframe DNA origami. Wang, X.; Li, S.; Jun, H.; John, T.; Zhang, K.; Fowler, H.; Doye, J. P.; Chiu, W.; and Bathe, M. Science Advances, 8(20). May 2022.
Planar 2D wireframe DNA origami [link]Paper   doi   link   bibtex  
Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks. Chen, T.; Dou, J.; Yang, L.; Sun, C.; Oppenheim, J. J.; Li, J.; and Dincă, M. Journal of the American Chemical Society, 144(12): 5583–5593. March 2022.
Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks [link]Paper   doi   link   bibtex  
Effects of chameleon dispense-to-plunge speed on particle concentration, complex formation, and final resolution: A case study using the Neisseria gonorrhoeae ribonucleotide reductase inactive complex. Levitz, T. S.; Brignole, E. J.; Fong, I.; Darrow, M. C.; and Drennan, C. L. Journal of Structural Biology, 214(1): 107825. March 2022.
Effects of chameleon dispense-to-plunge speed on particle concentration, complex formation, and final resolution: A case study using the Neisseria gonorrhoeae ribonucleotide reductase inactive complex [link]Paper   doi   link   bibtex  
Cryo-EM structural determination of Met18, a scaffold protein for iron-sulfur protein maturation. Vasquez, S.; Brignole, E. J.; Marquez, M. D.; Perlstein, D. L.; and Drennan, C. L. Biophysical Journal, 121(3): 452a. February 2022.
Cryo-EM structural determination of Met18, a scaffold protein for iron-sulfur protein maturation [link]Paper   doi   link   bibtex  
Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Zeng, Y.; Gordiichuk, P.; Ichihara, T.; Zhang, G.; Sandoz-Rosado, E.; Wetzel, E. D.; Tresback, J.; Yang, J.; Kozawa, D.; Yang, Z.; Kuehne, M.; Quien, M.; Yuan, Z.; Gong, X.; He, G.; Lundberg, D. J.; Liu, P.; Liu, A. T.; Yang, J. F.; Kulik, H. J.; and Strano, M. S. Nature, 602(7895): 91–95. February 2022.
Irreversible synthesis of an ultrastrong two-dimensional polymeric material [link]Paper   doi   link   bibtex   abstract  
  2021 (5)
Designing Highly Luminescent Molecular Aggregates via Bottom-Up Nanoscale Engineering. Barotov, U.; Klein, M. D.; Wang, L.; and Bawendi, M. G. The Journal of Physical Chemistry C, 126(1): 754–763. December 2021.
Designing Highly Luminescent Molecular Aggregates via Bottom-Up Nanoscale Engineering [link]Paper   doi   link   bibtex  
Dual‐Ion Intercalation and High Volumetric Capacitance in a Two‐Dimensional Non‐Porous Coordination Polymer. Banda, H.; Dou, J.; Chen, T.; Zhang, Y.; and Dincă, M. Angewandte Chemie International Edition, 60(52): 27119–27125. November 2021.
Dual‐Ion Intercalation and High Volumetric Capacitance in a Two‐Dimensional Non‐Porous Coordination Polymer [link]Paper   doi   link   bibtex  
The cellular environment shapes the nuclear pore complex architecture. Schuller, A. P.; Wojtynek, M.; Mankus, D.; Tatli, M.; Kronenberg-Tenga, R.; Regmi, S. G.; Dip, P. V.; Lytton-Jean, A. K. R.; Brignole, E. J.; Dasso, M.; Weis, K.; Medalia, O.; and Schwartz, T. U. Nature, 598(7882): 667–671. October 2021.
The cellular environment shapes the nuclear pore complex architecture [link]Paper   doi   link   bibtex   abstract  
Emerging investigator series: aramid amphiphile nanoribbons for the remediation of lead from contaminated water. Christoff-Tempesta, T.; and Ortony, J. H. Environ. Sci.: Nano, 8(6): 1536-1542. 2021.
Emerging investigator series: aramid amphiphile nanoribbons for the remediation of lead from contaminated water [link]Paper   doi   link   bibtex   abstract  
Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Dou, J.; Arguilla, M. Q.; Luo, Y.; Li, J.; Zhang, W.; Sun, L.; Mancuso, J. L.; Yang, L.; Chen, T.; Parent, L. R.; Skorupskii, G.; Libretto, N. J.; Sun, C.; Yang, M. C.; Dip, P. V.; Brignole, E. J.; Miller, J. T.; Kong, J.; Hendon, C. H.; Sun, J.; and Dincă, M. Nature Materials, 20(2): 222–228. February 2021.
Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks [link]Paper   doi   link   bibtex   abstract  
  2019 (1)
Structural basis for the docking of mTORC1 on the lysosomal surface. Rogala, K. B.; Gu, X.; Kedir, J. F.; Abu-Remaileh, M.; Bianchi, L. F.; Bottino, A. M. S.; Dueholm, R.; Niehaus, A.; Overwijn, D.; Fils, A. P.; Zhou, S. X.; Leary, D.; Laqtom, N. N.; Brignole, E. J.; and Sabatini, D. M. Science, 366(6464): 468–475. October 2019.
Structural basis for the docking of mTORC1 on the lysosomal surface [link]Paper   doi   link   bibtex